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Abstract—This paper deals with the laminar natural convection of a non-Newtonian fluid along a vertical
isothermal surface. The boundary-layer equations for a Sutterby fluid are solved numerically, and several
characteristics of the non-similarity solution are represented graphically. An approximate expression of
local Nusselt number Nu, is proposed as

Nu_ = 050 (Gr,, Pr,)°251+m,

where
-0 . ~0-3 . 0-66
m = (}04 Pro 0-23 A3 7Pr° . Zg 634 X

Gr,, and Pr, are Grashof number and Prandt] number based on zero viscosity respectively, and 4 and
Z, are non-Newtonian parameters.

Local heat-transfer coefficients are obtained by experiments with aqueous solutions of polyethylene-
oxide (PEO) and carboxymethylcellulose (CMC). The experimental results are in excellent agreement with

the theoretical ones.
NOMENCLATURE Pr, Prandtl number for a Newtonian

A, B, constants in the Sutterby model (6) fluid;

[-],[s]: R, viscosity ratio defined by (14);
F'(n), dimensionless velocity component in T, temperature [°C];

x-direction defined by (34); U,V, dimensionless velocity components
Gr,.. generalized Grashof number for a in X- and Y-directions defined by (9)

power law fluid defined by (35): and (10) respectively;
Gro., Grashof number for a Sutterby fluid u,v, velocity components in x- and y-

defined by (22): directions respectively [m/s] ;
Gr,,  Grashof number for a Newtonian X,Y, dimensionless coordinates for x and

fluid; y defined by (7) and (8) respectively:
g, gravitational acceleration [m/s?]: X, vertical distance from the leading edge
K, constant in the power law model (37) of the heated surface [m];

[Ns"/m?]; ¥ distance normally away from the
l, height of the heated surface [m]: heated surface [m];
Nu,, local Nusselt number defined by (21); Z,, dimensionless parameter defined by
n, constant in the power law model (37): (12).
Pr,.. generalized Prandtl number for a

power law fluid defined by (36): Greek symbols
Pry,,  Prandtl number for a Sutterby fluid o, local heat-transfer coefficient based

defined by (13):
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on (T, — T,) [W/m? deg];
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B, average coefficient of thermal expan-
sion [1/deg]:

7, shear rate [1/s];

n, similarity variable defined by (32):

0, dimensionless temperature defined by
(11):

K, thermal diffusivity [m?/s]:

A thermal conductivity [W/m deg]:

U, dynamic viscosity of a Newtonian

fluid [Ns/m?]:

Mo  apparent dynamic viscosity expressed
by (6) or (37) [Ns/m?]:

Hos constant in the Sutterby model (6)
(zero viscosity) [Ns/m?];

Vo kinematic zero  viscosity = u,/p
[m?/s]:

P density [kg/m®].

Subscripts

X, local values at x;

w, values at the heated surface;

L, values in the ambient fluid.

1. INTRODUCTION
SEVERAL informations are available on the
natural convective heat transfer from a vertical
isothermal surface to a non-Newtonian fluid.
Acrivos [1] and Akagi [2] obtained similarity
solutions for a power law fluid. Tien [3] and
Tien-Tsuei [4] obtained approximate solutions
by using the integral method for a power law
fluid and a Ellis fluid respectively. In all of these
analyses the inertia term in the momentum
equation is ignored. The shear rate induced in
natural convection is comparatively small and
varies in the directions both parallel and
perpendicular to the heated surface. The purely
viscous non-Newtonian behavior in the shear
rate range of interest is not accurately described
by the power law model which has two con-
stants, but by the Ellis [ 5] or the Sutterby model
[6] which has three constants. The existence of
the similarity solution of the boundary-layer
equations is intimately connected with the use
of the power law model and the neglect of the
inertia term in the momentum equation. There-
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fore, the natural convection of non-Newtonian
fluid possesses inherently no similarity.

As for experimental studies, Reilly et al. [7]
and Sharma-Adelman [8)] obtained average
heat-transfer coefficients by using aqueous solu-
tions of carboxypolyethylene. Although their
results are more or less different from the
similarity solution for the power law model [ 1],
it is impossible to examine the discrepancy in
detail, since there is no assurance of the heated
plates used being really isothermal. The propriety
of theoretical studies may be proved well when
more detailed measurements are carried out on
the local heat-transfer coefficient.

The object of the present study is to obtain an
accurate solution of the boundary-layer equa-
tions and to compare it with the experimental
results for the case of the natural convective
heat transfer from a vertical isothermal surface
to a purely viscous non-Newtonian fluid.

2. BASIC EQUATIONS
The pertinent equations of the boundary layer
are given as

ou v
™ 8_y=0’ 1
u u 1¢ fu
ua%—v@:gﬂ(T—- Tm)"}‘;g)-’(}lappa}), (2)
2
u£+vaT K——aT 3

ox 3y oy
with boundary conditions of
u=v=0T=T, at y=0, 4)

u =0, T=T, at y = . (5

where x is the vertical distance from the leading
edge of the heated surface, y the distance
normally away from the heated surface, 4 and v
velocity components in x- and y-directions
respectively, and T temperature. Average co-
efficient of thermal expansion f§, density p,
apparent viscosity u,, and thermal diffusivity
x may be evaluated at each appropriate reference
temperature.
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Apparent viscosity u,, of the Sutterby model
is given as

arc sinh By\4
luapp = “o (_—__Z) s (6)
Bj

where A, B and u, are constants and } is shear
rate. This expression characterizes well the non-
Newtonian behavior of fluids of dispersion
system such as high polymer solutions over a
wide range of shear rate.

By using the following dimensionless quan-
tities

X

= W’ (7)

y
Y =
(Bvo)*

Zipri, 8)

U= uPrt
~ {(Bv, )t gB(T, - T

Ve vZ 2Pri
{BvoPgB(T, — T}

©

(10)

T-T,;

ST

(1)

_ (Bvo)l'gB(T, — T.)

z, 2 :

12

v
0
Pro=—,

” (13)

R =t (14)
Ho

(1)~(5) are transformed as
o v

X &Y

1 oU oU 0 ouU
F;;(UE—X—, + Vﬁ) =6 +W(Ra—f>’

=0, (13)

(16)

2o _oe
&y =~ ay?®

Ua—@—+V

1).4 (1n
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U=V=0, @=1 at Y =0, (18)
U=0, =0 at Y = 0. (19)
Bj in R is written as
ou ou
s B¥ _ 72p.-30Y
By =B 3 Z§ Pr, v (20)

Local Nusselt number Nu, is given by

_nx _ —GT/oyx
Nu, = - Tw - Tac

==
= X(ZoPro) (— a_e)

37 (21)

00
= X¥Gr,y Pro)t ( - -a—l-;>w,

where local Grashof number Gr,,, is defined by

3
Gro, = g9B(T, 2 To)x*
Yo
It is seen from (15)+(21) that Nu, for a Sutterby
fluid is a function of Gr, Pr,, Pry, A and Z,,
though that for a Newtonian fluid is a function
of Gr Pr and Pr, that is, the former has two
more parameters than the latter. Therefore, the
effect of temperature difference (T, ~ T,) on
Nu, is not represented only by Grashof number,
unlike the case of Newtonian fluid, since
(T, — T,)is included also in Z,,.

In the above transformations (Bv,)? is intro-
duced as the unit of length. When the height of
the heated surface ! is introduced instead, as
done in the most of previous analyses, there
remains a surplus parameter (Bvy)/l in the
expression of local Nusselt number. This surplus
parameter not only makes calculation more
complicated, but also gives a superficial appear-
ance as if the height / affects on the local values
in the boundary layer.

(22)

3. NUMERICAL SOLUTION

Equations (15)+17) are relaxed to finite
difference form, and solved numerically by a
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forward-marching, implicit method with itera-
tion. Equation (15) is relaxed as

Unttin = Unnt Uniyno1 = Unnoy
2AX
+ Vm+1,n ;;:mﬂ L., (23)
and each term of (16) and (17) is written as
veuieX = Ug%ﬂ(vmﬁ',, - U, JAX. (24)
UdB/oX = UQ,H_,,(Q,,H," -0, VAX, (25)
VOU/SY = Vi) (Upey e
= Upvy - 1)2AY, (26)
Ve@sRY = Vo1 (Opiy nes
= Opira-J2AY, 2D
3*@/0Y? = (Opr1ne1 =20, ,
+ 60, - JMAYY, (28}
HROU/GY)OY = Rg.ﬂ,n(Um-z.uH
~2Upsy,n + Uy ae JAAYY
+(R;)l+1.n+1 - Rr?|+i.n-£}(Um+l,ff+1
~Upar,n-2AYY,  (29)

& =80

m+1i.n

(in the momentum equation}, (30)

where (m + 1) and ri represent the X and Y
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points of the nodal points, and superscript ”
represents the value obtained in the preceding
iteration on (m + 1) level. The local Nusselt
number is calculated from

Nu_ = X¥Gr, Pr,*

3- 49m+!.2 + @mn,s
x( SAT > {31}

Details of the computation are described in [9].

First, the computation was made on a
Newtonian fluid of 4 = 0, Pr;= 100 to test the
accuracy of the method. The obtained local
Nusselt number showed good agreement with
the similarity solution of Ostrach [10] for
Pr = 100 within the accuracy of 25 per cent
for Gr_Pr > 10°.

The profiles of temperature and vertical
velocity component for the case of 4 = 0-5.
Z, = 184 and Pr, = 100 are compared with the
similarity solutions for the power law model by
Acrivos [1], Akagi [2] and Tien [3] in Fig. 1.
Abscissa n and ordinates &(n) and F'(n) in the
figure are the similarity variable and the dimen-
sionless temperature and velocity component
defined by Akagi respectively, that is,

LI U Y+ (3
= = b, (32
1 (3:« n 1) <x><sr,,xp "o .

’Of’.. ! i T 7 : T 04
i
\ Present analysis
\ el e Acrivos [1land Akags (2]
: e ~—-=—Tien(3] oz
é‘ \ .,"/ Flg) 1
S - »
Bint "~ /‘1 t Fin
o5 // X - ; 02
L kN x2Q03my 7 \
i LAY . 2=08m/ |
- ff A N ) x=1-Qm !
Ly »\/x-OS.O‘Sund \\ | ! o
y R rom T | N
| RN "~
~ \.\-
{ ] | R H T\‘\. ] .
o) i 2 3 4 5 iC 8

Fic. 1. Comparison of profiles of temperature and vertical component.
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Table 1. Comparison of local Nusselt numbers
Case b4 n K - Nu,atx =05m ¥
» Acrivos | 1 . resent
(1/s) (Ns?/m?) and Akagi [2] Tien [3] analysis
1 1-528 0-646 0337 x 1072 1839 183-1
2 1528 0-587 0894 x 1072 1392 1376 1302
3 15218 0-562 0262 x 107! 956 94-2
o) = T-T, 13 profiles of u, v, T and } are reckoned. The value
() = T,-T, (33) of n evaluated from these data, however, varies
F(n) = ux=" ppia+ 0Gn+0) from 0598 to 0-584 and correspondingly K
n nx from 87 x 1072 to 95 x 10™3 Ns"/m? on the
3p 4 1\o+ DGR+ 1) K\n/3n+1) heated surface within the range of x = 0-1-1 m.
x\ = x| — Therefore, n = 0588 and K = 894 x 1073
p (3nt 1) Ns"/m? at x = 05 m are taken as reference
x Gry®"” (34)  values. By using these values, the present solution

where Gr, and Pr,_are the generalized Grashof
and Prandtl numbers defined by

K\2/2-m
Grnx = gﬁ(']:v - Tm) X2+ mi2 =n) (;) (35)

Pr =l 5 ll(z—n)x(l—ln)/ﬁ - (36)
L ™ p

respectively. K and n in (32)~(36) are constants
in the power law model

Hopp = K[| 37)

When B = 10s, p, = 1-5 x 10~? Ns/m*® and
p = 10° kg/m?3 are given to the present solution,

[Ne]

is converted and plotted in Fig. 1.

The discrepancy due to the choice of non-
Newtonian model is salient for the profile of
vertical velocity component, but it is slight for
the temperature profile as shown in Fig. 1.
Accordingly, as far as the heat-transfer co-
efficient is concerned, the power law mode] may
be applied, provided that the decision of nand K
is made at the shear rate on the heated surface
in its midheight. The propriety of this recom-
mendation is shown in Table 1. Case 2 in the
table corresponds to the case where n and K are
decided at 7 = 1528 s~! on the heated surface
at x = 05 m as aforementioned, and cases 1

R 0 5

7

Pr,=100 R

14

20

FiG. 2. Profiles of apparent viscosity.
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and 3 correspond to those at 7 = 1-528 and
1528 s~ ! respectively. Though the results on
case 2 are in good agreement with the present
solution, cases 1 and 3 give largely different
results.

An example of the profiles of R is shown in
Fig. 2. In the region near the heated surface
where the shear rate is large, R decreases
considerably. At the point where U attains its
peak, R becomes unity, ie. u,,, = f,, because
of the extinction of the shear rate. Since gradient
dU/dY is rather gradual in the outer boundary

RRERLL
| (a)Ettect of 4
Z,=10

Pr=100

T TY]HH‘ T IIHIHI

=
Z

{e]e]
g A%1 00
Z / A=075
42050
N As0-25
40, -

Newtonian, ¥ =3,Pr =00

(b) Etfect of 2,
A20-50
ol Pr= 100

3

Z,*1000
22100
2,210
Zy=l
_Newtonion, v =1, =100

RN

(c) Effect of ~r,
A=050
Z, =100

100

N A%,21000

Pr, =100

'
A
N T e

//f‘ \»\ \_Newtoniany=y, Ar=t000 ;
\\ N __Newtonian, v =i, Pr=100 i

\_Newfonian,v =y, Pr=10

i . | ' . i

[ Pl R |
'07 ’OE |OQ |O>0
Gr, P,

FIG. 3. Variation of local Nusseit number with the product
of local Grashof number and Prandt! number. (a) effect of A4.
(b) effect of Z,,. (c) effect of Pr,.
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layer, the decrease of R is not so large as in the
inner boundary layer, and R gradually
approaches to unity again at a great distance
from the surface. With the development of the
boundary layer, the extent of lowering of R
increases and the effect of the non-Newtonian
property gradually becomes predominant.

The effects of 4, Z, and Pr, on the relation of
Nu_ vs Gr, Pr, are shown in Figs. 3(a}H{c)
respectively. Generally, Nu_ for the non-New-
tonian fluid is higher than that for the Newtonian
fluid of v = v,. Since the increases of A and Z,
make non-Newtonian property large, Nu, in-
creases with them as shown in Figs. 3(a) and (b).
The difference of Nu, between non-Newtonian
and Newtonian fluids becomes large with the
decrease of Prandtl number as shown in Fig. 3(c).
Such a result is caused by the fact that the
smaller Pr,, is, the larger the induced shear rate
becomes, which enhances the decrease of the
apparent viscosity near the heated surface.

By the modification of the relation of Nu, vs
Gr_Pr for a Newtonian fluid of large Prandtl
number, numerical results are correlated approx-
imately as

Nu, = 0-50(Gr,, Pro)® 25t +m  (3g)

where

m= 0_041.)'.6'0'23A3-7Pro‘°'34Zg-63.4°'“ (39)

Expression (38) predicts the local Nusselt
number within the accuracy of + 10 per cent in
the range of 4 =0-1, Z, =0-10°, Pr, =
102-3 x 10°and Gr, Pr, = 10°-10'*. The com-
parison of exponent m in (38) with theoretical

values evaluated at Gro Pro =6 x 10® for
Pr, = 1000 is shown in Fig. 4.

4. EXPERIMENTS
Aqueous solutions of 0-2 and 0-59 poly-
ethyleneoxide (PEO) and 2-0%; carboxymethy!-
cellulose(CMC) were used as non-Newtonian
fluids. Since PEO solution exhibits the non-
Newtonian behavior to the range of low shear
rate and reduces to a Newtoniun fluid. ie.
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F1G6. 4. Comparison of exponent m of (39) with calculated
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Happ = Ho» @t @ lower shear rate with the increase
of its concentration, it is considered to serve for
verifying numerical calculations when experi-
ments are performed with fluids of various
concentrations. CMC solution is often used in
the experimental study of forced convection of
a non-Newtonian fluid. This solution fails,
however, to exhibit the non-Newtonian behavior
at such a comparatively low shear rate as
induced under the natural convection, since it
reduces to a Newtonian fluid at a moderate
shear rate. Accordingly, the heat-transfer
characteristics of CMC solution are considered

to be little different from those of a Newtonian
fluid. In order to confirm this fact experimentally
CMC solution was used.

The measured relation between the apparent
viscosity u,,, and the shear rate j for each fluid
is shown in Fig. 5. Such vent curves of PEO
solutions cannot be represented by the power
law model but accurately by the Sutterby model.
In the figure are also shown the ranges of shear
rate induced in the present experiments of
natural convection at the heated surface from
01 to 1 m height. By the way, the Maron—
Krieger-Sisko viscometer [11] and a co-axial

e T T I‘élllll LR RLLU R R UL SRR AL
= "0 0—o. ° 280 3
— \O\ © o0Co-oxial cylinder viscometer -
O O5%PEO 0\0 ® B 4 Moron-Krieger- Sisho viscometer  _|
I “0=—0——0—0~, ™~ .

54.0°C oo ~
0 e —
= 20%CMC - 3
e F e —
~ N .
v - —
Z + -a_u_%,ﬂi'g_n -~ \-Q*zse-c_
—
$ooll  O2%PEO —-— .
E 9@ O==OB——Om—p__ e 502°C 3
= 50-0°C opn__ =
- ) [ 3
I Ranges of shear rate induced 49.6%C e ]
I~ in the present experiments 0-5% PEO _
at the heated surface from 2:0% CMC
0-001—01 to 10 m height 02%PEC |
NIRRT BN 1T BRI FTTT A A e §7T NN W AT
ool o1 | 10 100 1000

y, /s

FIG. 5. Variation of apparent viscosity with shear rate.
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cylinder viscometer were used for the ranges of
higher and lower shear rate respectively. The
viscometry by the former was carried out at four
temperature levels in a range of 20-60°C but
only two of them are shown in the figure. The
constants in the Sutterby model 4,B and p,
were determined by overlapping these obtained
curves on the master plots of Fig. 6.

TETSU FUJII et al.

into 20 parts corresponding to 20 unit heaters.
The temperature of ambient fluid 7 was
measured vertically at 14 points. The deviation
of the measured values of T, from the average
one was within +2-5 per cent of the average
temperature difference of (T, — T_), and the
gradient of stratified temperature of ambient
fluid was at most 5°C/m. The ambient fluid was

A=00

ity Lo

' :‘[diT

.
cdedld -

&y

100

FIG. 6. Master plots of the Sutterby model.

The apparatus and procedure of experiments
of natural convection were the same as those
described in [12]. A vertical brass cylinder of
820 mm od. and 1:00 m height was immersed
in a container of 385 mm i.d. and 1-42 m height.
The cylinder was heated from inside by 20
electric heaters, and the electric input to each
unit heater was regulated so as to make the
surface temperature uniform and was measured
by a voltmeter and an ammeter. The local surface
temperature T, was measured by using the
thermocouples at 20 points in the center of each
section of the cylinder which was subdivided

sampled before and after each test run of about
2 hr, and from its viscometric data the degrada-
tion of fluid was confirmed to be negligibly small
during a series of test runs.

The effect of the curvature of the heated
cylinder upon the local Nusselt number was
estimated to be negligibly small from the
theoretical analysis of a Newtonian fluid [13].
The mean heat flux of a unit heater was assumed
as the local heat flux in the center of each
section in the calculation of local Nusselt
number. The physical properties of fluids, except
for the model constants, were assumed as the

Table 2. Conditions of experiments

Run Symbol Fluid T, (°C) T,(°O) A Z, Pr,
1 ~ 02% PEO 273 17-1 03 10 150
2 = 0-2% PEO 36-2 16:5 03 24 120
3 a 02% PEO 63-5 286 03 110 S0
4 [ J 0-5% PEO 441 220 04 170 2900
5 n 0-5% PEO 63-8 223 04 500 1500
6 X 2:0% CMC 395 20-2 0-5 0-008 800
7 + 2:0%, CMC 56-1 212 0-5 0025 490
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FiG. 7. Comparison between experimental resuits and present analysis. Symbols
correspond to those in Table 2.

same as those of pure water [14, 15]. The
coefficient of thermal expansion f was taken
as the average one evaluated in the temperature
range from T, to (T, — T )/2. The other
physical properties together with model constant
U, were evaluated at reference temperature
T, — 025(T,, — T_). The variation of model
constants 4 and B with temperature was
negligibly small. The experimental conditions
are shown in Table 2.

A comparison between the experimental
results and the present analysis is shown in
Fig. 7. The excellent agreement between them
verifies the propriety of the present analysis. In
the case of CMC solution both the measured
values and the theoretical lines come close to the
theoretical line of a Newtonian fluid as expected

200

before. The approximate expression (38) is also
in good agreement with the measured values
within the accuracy of + 10 per cent as shown
in Fig. 8.

5. CONCLUSIONS

(1) The Sutterby model is applied to the
analysis of natural convection of a pure viscous
non-Newtonian fluid.

(2) The height of the heated surface must not
be used as the characteristic length in the
dimensionless transformation, since the bound-
ary layer of non-Newtonian fluid possesses no
similarity.

(3) The profiles of temperature and vertical
velocity component are calculated with sufficient
accuracy by taking account of the inertia term

TT!|H||I T 11]1”1] T Hllml R AL
100} — — Expression (38) —
Nu, — —
L ) 4
20 Anﬂ/nnl AR AR A It AR A AT
10® 107 10® 0® 0%
(Grop A7

FiG. 8. Comparison between experimental results and approximate expression (38).
Symbols correspond to those in Table 2.
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in the momentum equation. The profile of the
latter is greatly different from the existing results
of analysis for the power law model.

(4) With the development of the boundary
layer, the extent of lowering of apparent
viscosity increases and the effect of the non-
Newtonian property gradually becomes pre-
dominant.

(5) The effects of Pr, and non-Newtonian
parameters 4 and Z, on the relation of Nu,_ vs
Gr, Pr, are obtained. The effect of temperature
difference (T, — T,) on Nu_ cannot be
appreciated by Grashof number only, unlike
the case of a Newtonian fluid.

{(6) The experimental results of Nu, are in
excellent agreement with the present numerical
analysis, and they are in agreement with
approximate expression (38) within +10 per
cent. The heat-transfer coefficient of CMC
solution did not show any non-Newtonian
characteristics in the present experiments.
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CONVECTION NATURELLE D’UN FLUIDE NON-NEWTONIEN DE SUTTERBY
AU VOISINAGE D'UNE SURFACE VERTICALE ISOTHERME

Résumé—Cet article traite de la convection laminaire naturelle d’un fluide non-newtonien le long d'une
surface verticale et isotherme. Les équations de la couche limite pour un fluide de Sutterby sont résolues
numériquement et plusieurs caractéristiques de la solution non similaire sont représentées graphiquement.
On propose une expression approchée du nombre de Nusselt local:

Nu, = 0’50(Grox},ro)o.25(l+ml

ou

m= 0,04 Pr60.23 A3.7 Pr50.34 28,63 A0.66

Gro, et Pr, sont respectivement le nombre de Grashof et le nombre de Prandtl, 4 et Z, sont les parameétres

non-newtoniens.

Le coefficient de transfert thermique local est obtenu expérimentalement avec des solutio_ns aqueuses
d’oxyde de polyéthyléne (PEO) et de carboxyméthylcellulose (CMC). Les résultats expérimentaux et
théoriques sont en excellent accord.



NATURAL CONVECTIVE HEAT TRANSFER

WARMEUBERGANG DURCH FREIE KONVEKTION VON EINER SENKRECHTEN
ISOTHERMEN FLACHE AN EINE NICHT-NEWTONISCHE SUTTERBY-FLUSSIGKEIT

Zuasammenfassang —Dicse Arbeit behandelt die laminare freie Konvektion ciner nicht-Newtonischen
Flissigkeit lings einer senkrechten isothermen Flache. Die Grenzschichtgleichungen fiir die Sutterby-
Flissigkeit werden numerisch geldst und einige Charakteristika der nichtihnlichen Lbsung werden
graphisch dargestellt. Fiir die 8rtliche Nussel-Zahl Nu, wird ein Niherungsausdruck vorgeschiagen:

Nu, = 0,5(Gro,Prg)>250+=
mit
m = 0,04 PraO.ZB AT, Prg.34.zg,63 A9.66

Gro, und Pr, sind die mit der Nullviskositat gebildeten Grashof- bzw. Prandtl-Zahlen, 4 und Z, sind
nicht-Newtonische Parameter.
Ortliche Wirmeiibergangskoeffizienten werden erhalten aus Experimenten mit wasserigen Losungen von
Polyithylenoxid (PEO) und Carboxymethylcellulose (CMC). Die experimentellen Ergebnisse stimmen
hervorragend mit den theoretischen {iberein.

CBOBOJHOKOHBEKTHUBHLIN IIEPEHOC TENJA OT BEPTHKAJIbHON
V30TEPMUYECKON MNOBEPXHOCTHU K HEHBIOTOHOBCHON HUIKOCTH

Amnoramea—B pa6ore nmpupefeHo TCCIAEHOBAHNE eCTECTBEHHON KOHBEKUMM IIPH JaMMHADHOM
06TeKaHMH BEPTHKAILHON MBOTEPMHYECKON NOBEPXHOCTH HEHBIOTOHOBCKOM HKMIKOCTBIO.
VpasHeHHs NOrPaHUYHOTO CIOA NJIA MUAKOCTH CaTTepOu pelleHH YHCIEHHO, 3 HEKOTODHE
XapaKTepHCTUKY HeaBTOMOIENLHOrO peINeHHA paccyuraH rpagmueckr. [IIpennoseno
npubamieHHOe BHpaskeHNe A JOKaJbHOro yncia HyccensTa cleRyiomero BUAA :

Nug = 0,50( QropPrg)0-28+m)
by (]
m = 0,04 Pr0‘°-23 A3 1Pro=037 Zoo.saAﬂ-“

Gror ¥ Pry—cootBercrBenHo uucaa [pacroda m Ilpaugrasn, paccamTaHHEe NpH HyJaeBoit
BABKOCTH, a A, Zy—TapaMeTpH HEeHbIOTOHOBCKON MUIKOCTH.
KoapdrumeHTH IOKAIBHOrO Temyioo06MeHa MOJYYeHH B 9KCIEPUMEHTaX ¢ BOJHBIMHE
pacropamu nommsTnaeHokckna (II90) m wapbokcumernanenmonosn (KMIL). PesymsraTh
SKCMEePUMEHTA XOPOIIO COTVIACYIOTCH C TeOPETHYECKMMH pacyeTaMi.
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