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Abstract-This paper deals with the laminar natural convection of a non-Newtonian fluid along a vertical 
isothermal surface. The boundary-layer equations for a Sutterby fluid are solved numerically, and several 
characteristics of the non-similarity solution are represented graphically. An approximate expression of 
local Nusselt number Nu, is proposed as 

where 
Nu, = 050 (Gr,,Pr,)0’25” +m), 

Gr,, and Pr, are Grashof number and Prandtl number based on zero viscosity respectively, and A and 
Z, are non-Newtonian parameters. 

Local heat-transfer coefticients are obtained by experiments with aqueous solutions of polyethylene- 
oxide (PEO) and carboxymethylcellulose (CMC). The experimental results are in excellent agreement with 

the theoretical ones. 

NOMENCLATURE 

constants in the Sutterby model (6) 

c4 bl: 
dimensionless velocity component in 
x-direction defined by (34); 
generalized Grashof number for a 
power law fluid defined by (35): 
Grashof number for a Sutterby fluid 
defined by (22): 
Grashof number for a Newtonian 
fluid ; 
gravitational acceleration [m/s*] : 
constant in the power law model (37) 
[Ns”/m”] ; 
height of the heated surface [m] ; 
local Nusselt number defined by (21): 
constant in the power law model (37): 
generalized Prandtl number for a 
power law fluid defined by (36): 
Prandtl number for a Sutterby fluid 
defined by (13) : 

Pr, 

R, 
T, 
u, v, 

K v, 

x, y, 

X, 

YY 

z,, 

Prandtl number for a Newtonian 
fluid: 
viscosity ratio defined by (14); 
temperature [“C> 
dimensionless velocity components 
in X- and Y-directions dcfimed by (9) 
and (10) respectively; 
velocity components in x- and y- 
directions respectively [m/s] ; 
dimensionless coordinates for x and 
y defined by (7) and (8) respectively: 
vertical distance from the leading edge 
of the heated surface [ml; 
distance normally away from the 
heated surface [m] ; 
dimensionless parameter defined by 

(12). 

2177 

Greek symbols 
a X’ local heat-transfer coefficient 

on (T, - Tm)[\N/m2 deg]; 
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average coefftcient of thermal expan- 
sion [ l/deg] : 
shear rate [l/s]; 
similarity variable defined by (32): 
dimensionless temperature defined by 
(11): 
thermal diffisivity [m’/s] : 
thermal conductivity [W/m deg] : 
dynamic viscosity of a Newtonian 
fluid [Ns/m’]: 
apparent dynamic viscosity expressed 
by (6) or (37) [Ns/m2]: 
constant in the Sutterby model (6) 
(zero viscosity) [Ns/m’] ; 
kinematic zero viscosity = pa/p 
[m2/s] : 
density [kg/m3]. 

Subscripts 

x, 
W, 
X, 

local values at x; 
values at the heated surface; 
values in the ambient fluid. 

1. INTRODUCTION 

SEVERAL informations are available on the 
natural convective heat transfer from a vertical 
isothermal surface to a non-Newtonian fluid. 
Acrivos [l] and Akagi [2] obtained similarity 
solutions for a power law fluid. Tien [3] and 
Tien-Tsuei [4] obtained approximate solutions 
by using the integral method for a power law 
fluid and a Ellis fluid respectively. In all of these 
analyses the inertia term in the momentum 
equation is ignored. The shear rate induced in 
natural convection is comparatively small and 
varies in the directions both parallel and 
perpendicular to the heated surface. The purely 
viscous non-Newtonian behavior in the shear 
rate range of interest is not accurately described 
by the power law model which has two con- 
stants, but by the Ellis [5] or the Sutterby model 
[6] which has three constants. The existence of 
the similarity solution of the boundary-layer 
equations is intimately connected with the use 
of the power law model and the neglect of the 
inertia term in the momentum equation. There- 

fore, the natural convection of non-Newtonian 
fluid possesses inherently no similarity. 

As for experimental studies, Reilly et al. [7] 
and Sharma-Adelman [8] obtained average 
heat-transfer coefficients by using aqueous solu- 
tions of carboxypolyethylene. Although their 
results are more or less different from the 
similarity solution for the power law model [ 11, 
it is impossible to examine the discrepancy in 
detail, since there is no assurance of the heated 
plates used being really isothermal. The propriety 
of theoretical studies may be proved well when 
more detailed measurements are carried out on 
the local heat-transfer coefIIcient. 

The object of the present study is to obtain an 
accurate solution of the boundary-layer equa- 
tions and to compare it with the experimental 
results for the case of the natural convective 
heat transfer from a vertical isothermal surface 
to a purely viscous non-Newtonian fluid. 

2. BASIC EQUAnONS 

The pertinent equations of the boundary layer 
are given as 

(1) 

u~+v+qT-TJ+;& f! gpp ay ) , (2) 

dT dT a2T 
Ux+v~=Kdy~ (3) 

with boundary conditions of 

u=v=O,T=T w at y = 0, (41 

u = 0, T = T, at y=%, is) 
where x is the vertical distance from the leading 
edge of the heated surface, y the distance 
normally away from the heated surface, u and G’ 
velocity components in x- and y-directions 
respectively, and T temperature. Average co- 
efficient of thermal expansion /I, density p, 
apparent viscosity papP and thermal diffusivity 
K may be eVdUated at each apprOprd! reference 

temperature. 
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Apparent viscosity cl,PP of the Sutterby model 
is given as 

/& = ~~(““~n~‘)^ (6) 

where A, B and p0 are constants and p is shear 
rate. This expression characterizes well the non- 
Newtonian behavior of fluids of dispersion 
system such as high polymer solutions over a 
wide range of shear rate. 

By using the following dimensionless quan- 
tities 

U= 
u PTA 

~(Bv,)W(T, - T,))*’ 

V 
vz ;sPr,s 

= {(Bv,)*ilfi(T, - T,))*’ 

o _ T-T,: 
T, - Too’ 

z, = (Bv,hB(T,v - T-1 

4 ' 

Pr, ="o, 
K 

R&f=', 
PO 

(l)-(5) are transformed as 

au av 
z+ly=o, 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

U=V=O, O=l at Y=O, (18) 

u = 0, @=O at Y=cc. (19) 

Bj, in R is written as 

Bf = B!! ZtPr-’ a’ += 0 0 ay (20) 

Local Nusselt number Nu, is given by 

Nu,=y= - W’-/~Y),,J 

TW - TW 

(21) 
w 

ae 
= X*(Gr,,Pr,)* - dY , 

( ) w 

where local Grashof number Gr, is defined by 

g/W, - T,)x3 
Gro, = _ . (W 

It is seen from (15)-(21) that Nu, for a Sutterby 
fluid is a function of Gr,JV,, Pro, A and Z,, 
though that for a Newtonian fluid is a function 
of Gr,Pr and Pr, that is, the former has two 
more parameters than the latter. Therefore, the 
effect of temperature difference (T, - T,) on 
Nu, is not represented only by Grashof number, 
unlike the case of Newtonian fluid, since 
(T,,, - T,) is included also in Z,. 

In the above transformations (Bv,)* is intro- 
duced as the unit of length. When the height of 
the heated surface I is introduced instead, as 
done in the most of previous analyses, there 
remains a surplus parameter (Bvo)*/l in the 
expression of local Nusselt number. This surplus 
parameter not only makes calculation more 
complicated, but also gives a superficial appear- 
ance as if the height 1 affects on the local values 
in the boundary layer. 

3. NUMERICAL SOLUTION 

Equations (15)-(17) are relaxed to finite 
difference form, and solved numerically by a 
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forward-marching, implicit method with itera- 
tion, Equation ( 15) is relaxed as 

u AI+ i,n - uin.. + KIJl,n-l - % n-l 7 

2AX 

V + m+ l,n - Yn+1,n4 
AY = 

0, (231 

and each term of (16) and (17) is written as 

~~U/~X = U:il,a(~mtL.n - Q&iAX. (241 

ua@laX = u~+l,.(@,,,+l.n - @,..)/AX, (25) 

=WaY = ~L,n(Umil,n+l ’ 

- u,,,, I,=- ,)iQAK f26) 

va0laY = ~~+l.n~OlnCL.nil 

- 0,, 1.n- &QW f27) 

a20/ay2 = w%lle1.“+1 - 20m.1,. 

+0 m+ i,rr- ,YfAY)2, m$ 

W~WWaY = R:+&Jm>.l,n+l 

-2L1,n + ~,+,..-J/OWz 

+Rtt.n+r - RLn-Lml+l,~+1 

-u ,.,,,-,YGW2, (2% 

Q = @Ln (in the momentum equation), (30) 

where (m + 1) and ri represent the X and Y 

pornts of the nodal points, and superscript ” 
represents the value obtained in the preceding 
iteration on (m + 1) level+ The iocal Nusseft 
number is calculated from 

N% = X*(Cr,,Pr,)* 

Details of the computation are described in [P]. 
First, the computation was made un a 

Newtonian fluid of A = 0, Pro= 100 to test the 
accuracy of the method. The obtained local 
Nusselt number shuwed good a~eement with 
the similarity solution of Ostrach [lo] for 
PV = 100 within the accuracy of 2.5 per cent 
for C+,Pr > IO”, 

The profiles of temperature and vertical 
velocity component for the case of A = O-5. 
z, = 184 and Pr, = 100 are compared with the 
similarity solutions for the power law model by 
Acrivos [l], Akagi [2] and Tien [3] in Fig. I. 
Abscissa 4 and ordinates e(q) and F’(q) in the 
figure are the similarity variable and the dimen- 
sionless temperature and velocity component 
defined by Akagi respectively, that is, 

- Pnssntanalysts 

------Acrivcm [Iland AkogrL21 
----Tlen[~S1 -0.3 

F’W 

02 

Qi 
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Table 1. Comparison of local Nusselt numbers 

Case 

1 
2 
3 

? 

(l/s) 

I.528 
1528 

152.8 

n 

0646 
0.587 
0.562 

K 

(Ns”/m’) 

0337 x 10-Z 
0.894 x 1O-2 
0.262 x 10-l 

iVu,atx=@Sm 
Acrivos[lJ Present 

- 

and Akagi [2] 
Tien [3] 

analysis 

183.9 183.1 
139.2 137.6 130.2 
95.6 94.2 

T - T, 
@(s) = T _ T I 

w T 

(33) 

F’(v) = u.Jl(2-“) prw+ lM3rl-c 1) 
nx 

(n+ 1M3n+ 1) K n/(3n+l) 

x - 

0 P 

x G$f3”“’ (34) “.x 
where Gr, and Pr, are the generalized Grashof 
and Prandtl numbers defined by 

Gr, e g#l( T, - T’) ~(2 +“)m -9 K 21(2-n) 0 _ 
P 

(35) 

$2 - 2*)/(2 -n) (36) 

respectively. K and n in (32)-(36) are constants 
in the power law model 

p app = K I~[“-? (37) 

When B = IOS, pc) = 1.5 x 10m2 Ns/m2 and 

P = lo3 kg/m3 are given to the present solution, 

I 

RO 

profiles oiu, U, T and p are reckoned. The value 
of n evaluated from these data, however, varies 
from O-598 to 0584 and correspondingly K 
from 8.7 x 10e3 to 9.5 x low3 NC/m2 on the 
heated surface within the range of x = O-l-l m. 
Therefore, n = O-588 and K = 8.94 x 10m3 
Ns”/m2 at x = 0.5 m are taken as reference 
values. By using these values, the present solution 
is converted and plotted in Fig. 1. 

The discrepancy due to the choice of non- 
Newtonian model is salient for the profile of 
vertical velocity component, but it is slight for 
the temperature profile as shown in Fig. 1. 
Accordingly, as far as the heat-transfer co- 
e&ient is concerned, the power law model may 
be applied, provided that the decision of n and K 
is made at the shear rate on the heated surface 
in its midheight. The propriety of this recom- 
mendation is shown in Table 1. Case 2 in the 
table corresponds to the case where n and K are 
decided at 9 = 15.28 s-’ on the heated surface 
at x = 0.5 m as aforementioned, and cases 1 

I I I I I I 
5 lo 15 20 Jo 100 km 

Y 

FIG. 2. Profiles of apparent viscosity. 
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and 3 correspond to those at j = 1528 and 
1528 s- ’ respectively. Though the results on 
case 2 are in good agreement with the present 
solution, cases 1 and 3 give largely different 
results. 

An example of the profiles of R is shown in 
Fig. 2. In the region near the heated surface 
where the shear rate is large, R decreases 
considerably. At the point where U attains its 
peak, R becomes unity, i.e. P,,,~ = ,LQ,, because 
of the extinction of the shear rate. Since gradient 
aU/aY is rather gradual in the outer boundary 

I ’ ’ : I ““I ’ ’ ’ 1 ““I ’ ’ ’ I’i”I, 1 

Newtonim. Y =lg,E!OO 

‘r 

0 

FIG. 3. Variation of local Nusselt number with the product 
of local Grashof number and Prandtl number. (a) effect of A. 

(b) effect of Z,. (c) effect of Pr, 

layer, the decrease of R is not so large as in the 
inner boundary layer, and R gradually 
approaches to unity again at a great distance 
from the surface. With the development of the 
boundary layer, the extent of lowering of R 
increases and the effect of the non-Newtonian 
property gradually becomes predominant. 

The effects of A, 2, and Pr, on the relation of 
Nu, vs Gr,J+,, are shown in Figs. 3(a)-(c) 
respectively. Generally, Nu, for the non-New- 
tonian fluid is higher than that for the Newtonian 
fluid of v = vO. Since the increases of A and 2, 
make non-Newtonian property large, Nu, in- 
creases with them as shown in Figs. 3(a) and (b). 
The difference of Nu, between non-Newtonian 
and Newtonian fluids becomes large with the 
decrease of Prandtl number as shown in Fig. 3(c). 
Such a result is caused by the fact that the 
smaller Pr, is, the larger the induced shear rate 
becomes, which enhances the decrease of the 
apparent viscosity near the heated surface. 

By the modification of the relation of Nu, vs 
Gr,Pr for a Newtonian fluid of large Prandtl 
number, numerical results are correlated approx- 
imately as 

’ % Y = 0~~0(G@‘r0)0~2s~1 +m) (38) 

where 

,,, = 0.04~~o0.23~3.7Pr60.3~2~.63A0'"6 (39) 

Expression (38) predicts the local Nusselt 
number within the accuracy of & 10 per cent in 
the range of A = O-l, 2, = 0-103, Pro = 
102-3 x lo3 and GIOxP~O = 106--10’ ‘. The com- 
parison of exponent m in (38) with theoretical 
values evaluated at GrOxPrO = 6 x lo8 for 
Pro = loo0 is shown in Fig. 4. 

.L EXPERIMENTS 

Aqueous solutions of 0.2 and 0.5 7; poly- 
ethyleneoxide (PEO) and 2.0 % carboxymethyl- 
cellulose(CMC) were used as non-Newtonian 
fluids. Since PEO solution exhibits the non- 
Newtonian behavior to the range of low shear 
rate and reduces to a Newtoni;ln fluid, i.e. 
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t 
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FIG. 4. Comparison of exponent m of (39) with calculated 
values. 

P SPP 
= p,,, at a lower shear rate with the increase 

of its concentration, it is considered to serve for 
verifying numerical calculations when experi- 
ments are performed with fluids of various 
concentrations. CMC solution is often used in 
the experimental study of forced convection of 
a non-Newtonian fluid. This solution fails, 
however, to exhibit the non-Newtonian behavior 
at such a comparatively low shear rate as 
induced under the natural convection, since it 
reduces to a Newtonian fluid at a moderate 
shear rate. Accordingly, the heat-transfer 
characteristics of CMC solution are considered 

to be little different from those of a Newtonian 
fluid. In order to confirm this fact experimentally 
CMC solution was used. 

The measured relation between the apparent 
viscosity +_ and the shear rate + for each fluid 
is shown m Fig. 5. Such vent curves of PEO 
solutions cannot be representedby the power 
iaw model but accurately by the Sutterby model. 
In the figure are also shown the ranges of shear 
rate induced in the present experiments of 
natural convection at the heated surface from 
O-1 to 1 m height. By the way, the Maron- 
Krieger-Sisko viscometer [ll] and a co-axial 

I.0 , , , (,,, , , , /,,, , , , I,,, , , , ,(I( , / , 

_ -0-o-o 

- 05%PEO 
0 oco-oKkll cylinder vtm 

- Rar98safshearrateinduced 
- in the present experiments _ Ofi% PEO 

at tha hasted surface tram - 2.OY. CMC 

o.ool 0.1 to I.0 m height 

001 0.1 I IO 100 IWO 

FIG. 5. Variation of apparent viscosity with shear rate. 
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cylinder viscometer were used for the ranges of into 20 parts corresponding to 20 unit heaters. 
higher and lower shear rate respectively. The The temperature of ambient fluid T, was 
viscometry by the former was carried out at four measured vertically at 14 points. The deviation 
temperature levels in a range of 20-6O”C but of the measured values of T,,, from the average 
only two of them are shown in the figure. The one was within +2-5 per cent of the average 
constants in the Sutterby model A, B and p0 temperature difference of (T, - T,), and the 
were determined by overlapping these obtained gradient of stratified temperature of ambient 
curves on the master plots of Fig. 6. fluid was at most 5”C/m. The ambient fluid was 

A =QO 

001 I lllllll : : i!lIll/ I /I, 1 Ill I 
01 IO 10 Km ooo 

BY 

FIG. 6. Master plots of the Sutterby model. 

The apparatus and procedure of experiments 
of natural convection were the same as those 
described in [12]. A vertical brass cylinder of 
82-O mm o.d. and l-00 m height was immersed 
in a container of 385 mm i.d. and 1.42 m height. 
The cylinder was heated from inside by 20 
electric heaters, and the electric input to each 
unit heater was regulated so as to make the 
surface temperature uniform and was measured 
by a voltmeter and an ammeter. The local surface 
temperature T,,, was measured by using the 
thermocouples at 20 points in the center of each 
section of the cylinder which was subdivided 

sampled before and after each test run of about 
2 hr, and from its viscometric data the degrada- 
tion of fluid was confirmed to be negligibly small 
during a series of test runs. 

The effect of the curvature of the heated 
cylinder upon the local Nusseh number was 
estimated to be negligibly small from the 
theoretical analysis of a Newtonian fluid [13]. 
The mean heat flux of a unit heater was assumed 
as the local heat flux in the center of each 
section in the calculation of local Nusselt 
number. The physical properties of fluids, except 
for the model constants, were assumed as the 

Run 

1 
2 
3 
4 
5 
6 
7 

Symbol 

f- 
r _~ 
A 
; 

x 
+ 

Table 2. Conditions of experiments 
-_; 

Fluid T, (“C) T, (“Cl .4 ZO Pr” 

0.2 7; PEO 27.3 17.1 0.3 10 150 
0.2 % PEO 36.2 16.5 0.3 24 120 
0.2 % PEO 63.5 28.6 @3 110 50 
0.5 % PEO 44.1 22.0 0.4 170 2900 
0.5 % PEO 63.8 22.3 0.4 500 1500 
2.0 “/A CMC 39.5 20.2 0.5 OGO8 800 
2.0 :d CMC 56.1 21.2 0.5 0.025 490 
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100 - - Pmsent onolysis 

FIG. 7. Comparison between experimental results and present analysis. Symbols 
correspond to those in Table 2. 

same as those of pure water [ 14, 151. The 
coefficient of thermal expansion /3 was taken 
as the average one evaluated in the temperature 
range from T, to (T,,, - T,)/2. The other 
physical properties together with model constant 
pLo were evaluated at reference temperature 

TW - 0*25(T,,, - T,). The variation of model 
constants A and B with temperature was 
negligibly small. The experimental conditions 
are shown in Table 2. 

A comparison between the experimental 
results and the present analysis is shown in 
Fig. 7. The excellent agreement between them 
verifies the propriety of the present analysis. In 
the case of CMC solution both the measured 
values and the theoretical lines come close to the 
theoretical line of a Newtonian fiuid as expected 

before. The approximate expression (38) is also 
in good agreement with the measured values 
within the accuracy of f 10 per cent as shown 
in Fig. 8. 

5. CONCLUSIONS 

(1) The Sutterby model is applied to the 
analysis of natural convection of a pure viscous 
non-Newtonian fluid. 

(2) The height of the heated surface must not 
be used as the characteristic length in the 
dimensionless transformation, since the bound- 
ary layer of non-Newtonian fluid possesses no 
similarity. 

(3) The profiles of temperature and vertical 
velocity component are calculated with sufficient 
accuracy by taking account of the inertia term 

loo - Enpression (36) 

FIG. 8. Comparison between experimental results and approximate expression (381. 
Symbols correspond to those in Table 2. 
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in the momentum equation. The profile of the 
latter is greatly different from the existing results 
of analysis for the power law model. 

(4) With the development of the boundary 
layer, the extent of lowering of apparent 
viscosity increases and the effect of the non- 
Newtonian property gradually becomes pre- 
dominant. 

(5) The effects of Pr, and non-Newtonian 
parameters A and Z, on the relation of Nu, vs 
Gr,,,PrO are obtained. The effect of temperature 
difference (T, - T,) on Nu, cannot be 
appreciated by Grashof number only, unlike 
the case of a Newtonian fluid. 

(6) The experimental results of Nu, are in 
excellent agreement with the present numerical 
analysis, and they are in agreement with 
approximate expression (38) within + 10 per 
cent. The heat-transfer coefficient of CMC 
solution did not show any non-Newtonian 
characteristics in the present experiments. 
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CONVECTION NATURELLE D’UN FLUIDE NON-NEWTONIEN DE SUTTERBY 
AU VOISINAGE DUNE SURFACE VERTICALE ISOTHERME 

R&m&-Cet article traite de la convection laminaire oaturelle dun fluide non-oewtonien le long d’une 
surface verticale et isotherme. Les equations de la couche limite pour un fluide de Sutterby sont resolues 
numeriquement et plusieurs caracteristiques de la solution non similaire soot representies graphiquement. 
On propose uoe expression approchee du nombre de Nusselt local : 

Nu, = 0,50(Gr,~r,)0~2s”fm’ 

Gr,, et Pr, sont respectivemeot le nombre de Grashofet le nombre de Prandtl, A et Z0 sent les parametres 
non-oewtoniens. 

Le coefficient de traosfert thermique local est obteou experimentalemeot avec des solutions aqueuses 
d’oxyde de polyethylene (PEO) et de carboxymethylcellulose (CMC). Les r&sultats experimentaux et 

th&niques soot en excellent accord. 
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WxRMEf_)BERGANG DURCH FREIE KONVEKTION VON EINER SENKRECHTEN 
ISOTHERMEN FtiCHE AN EINE NIGHT-NEWTONISCHE SU’ITERBY-FLUSSIGKEIT 

55-g-D Arbeit behandelt die laminate freie Konvektion einer nicht-Newton&hen 
Flitssigkeit liings eiuer senkrechten isothermen Fliiche. Die Grenzachichtglelchungen fiir die Sutterby- 
Fliissigkeit we&n numetisch gel6st und einige Charakteristika da nicht%hnlichen L&sung werden 
graphisch dargestellt. Fiir die &tliche Nussel-Zahl Nu, wird e-in NHherungsausdruck vorgeschlagen : 

Nu, = 0,5(GroxRo)0~25’1+” 

mit 

Gr, und Pro sind die mit der Nullviskositit gebildeten Grashof- bnv. Prandtl-Zahlen, A und 2, sind 
nicht-Newtonische Parameter. 

&tliche W&rmeilbergangskoeffienten werdeu erhalten aus Experimenten mit wasserigm Lbsungcn von 
Polytithyleuoxid (PEO) uud Carboxymethylcellulose (CMC). Die experimentellen Ergebnisse stimmeu 

hervorragend mit den theoretischen ilberein. 

CBOBOJJHOKOHBEKTHBHbI~ IIEPEHOC TEI-IJIA OT BEPTMKAJIbHOn 
H3OTEPMHUECKOn I-IOBEPXHOCTB K HEHbIOTOHOBCKOn 3fEEIJJKOCTki 

AEEOT~W-B pa6oTe lIpnBe~eHOTCCJ'leJJOBaIine eCTeCTBeAAOti KOHBeK~nK lIpSi JlaMnHapHOM 

06TeKaHnn BepTnKaJIbHOti naOTepMnYeCKOfi IIOBepXHOCTn HeHbDTOHOBCKOti HinAKOCTblO. 

YpaBHeHnR norpaHnrnor0 cnofi Aari xinAKocTn CaTTepBw pernew wicneHn0, a HeKoTopble 

XapaKTepncTntcn HeaBToMoAenbHoro pemeHnR paccwTaw rpa@wtecKn. llpeAnomeK0 

npn6nnmeHHoe BhlpaHtenne Ann noKanbHor0 sncna HyCCeJIbTa cneaymwero BnAa: 

me 
Nu,= 0,50( &oJ’ro)0*26” + m), 

Qroz A Pro-cooTBeTcTseKHo wcna Fpacroaa II llparrxwui, paccwiTaxiHble npn HyneBoil 

BRBKOCTB ,aA, &-IIapaMeTpbl HeHblOTOHOBCKOii H(nAKOCTEi. 

Koa$n@i~neHTbl noKanbHor0 Tensoo6meHa nonygeHn B aKcnepnmenTax c BoAHun 

pacToparn nonnaTnneHoKcn~a (lT30) n Kap60KCnYeTnJTqeJIJIIOIIOEibI (KMU). PeaynbTaTar 

aKcnepnnaeHTa xopomo coraacywrca c TeopeTnrecKnan pac9eTamM. 


